Portal:Nuclear technology


The Nuclear Technology Portal

Introduction

General images -

The following are images from various nuclear technology-related articles on Wikipedia.

Selected article -

Silverplate was the code reference for the United States Army Air Forces' participation in the Manhattan Project during World War II. Originally the name for the aircraft modification project which enabled a B-29 Superfortress bomber to drop an atomic weapon, "Silverplate" eventually came to identify the training and operational aspects of the program as well. The original directive for the project had as its subject line "Silver Plated Project," but continued usage of the term shortened it to "Silverplate".

Testing began with scale models at the Naval Proving Ground in Dahlgren, Virginia, in August 1943. Modifications began on a prototype Silverplate B-29 known as the "Pullman" in November 1943, and it was used for bomb flight testing at Muroc Army Air Field in California commencing in March 1944. The testing resulted in further modifications to both the bombs and the aircraft.

Seventeen production Silverplate aircraft were ordered in August 1944 to allow the 509th Composite Group to train with the type of aircraft they would fly in combat, and for the 216th Army Air Forces Base Unit to test bomb configurations. These were followed by 28 more aircraft that were ordered in February 1945 for operational use by the 509th Composite Group. This batch included the aircraft which were used in the atomic bombings of Hiroshima and Nagasaki in August 1945. Including the Pullman B-29, 46 Silverplate B-29s were produced during and after World War II. An additional 19 Silverplate B-29s were ordered in July 1945, which were delivered between the end of the war and the end of 1947. Thus, 65 Silverplate B-29s were made. The use of the Silverplate codename was discontinued after the war, but modifications continued under a new codename, Saddletree. Another 80 aircraft were modified under this program. The last group of B-29s was modified in 1953 but never saw further service. (Full article...)

Selected picture -

Credit: Federal government of the United States
Trinity Test. Norris Bradbury, group leader for bomb assembly, stands next to the partially assembled Gadget atop the test tower. Later, he became the director of Los Alamos, after the departure of Oppenheimer.

Did you know?

  • WikiProject Energy
  • WikiProject Technology
  • WikiProject Military history

Things you can do


Here are some Open Tasks :

Selected biography -

Stanisław Marcin Ulam (Polish: [sta'ɲiswaf 'mart͡ɕin 'ulam]; 13 April 1909 – 13 May 1984) was a Polish and American mathematician, nuclear physicist and computer scientist. He participated in the Manhattan Project, originated the Teller–Ulam design of thermonuclear weapons, discovered the concept of the cellular automaton, invented the Monte Carlo method of computation, and suggested nuclear pulse propulsion. In pure and applied mathematics, he proved a number of theorems and proposed several conjectures.

Born into a wealthy Polish Jewish family in Lemberg, Austria-Hungary; Ulam studied mathematics at the Lwów Polytechnic Institute, where he earned his PhD in 1933 under the supervision of Kazimierz Kuratowski and Włodzimierz Stożek. In 1935, John von Neumann, whom Ulam had met in Warsaw, invited him to come to the Institute for Advanced Study in Princeton, New Jersey, for a few months. From 1936 to 1939, he spent summers in Poland and academic years at Harvard University in Cambridge, Massachusetts, where he worked to establish important results regarding ergodic theory. On 20 August 1939, he sailed for the United States for the last time with his 17-year-old brother Adam Ulam. He became an assistant professor at the University of Wisconsin–Madison in 1940, and a United States citizen in 1941.

In October 1943, he received an invitation from Hans Bethe to join the Manhattan Project at the secret Los Alamos Laboratory in New Mexico. There, he worked on the hydrodynamic calculations to predict the behavior of the explosive lenses that were needed by an implosion-type weapon. He was assigned to Edward Teller's group, where he worked on Teller's "Super" bomb for Teller and Enrico Fermi. After the war he left to become an associate professor at the University of Southern California, but returned to Los Alamos in 1946 to work on thermonuclear weapons. With the aid of a cadre of female "computers" he found that Teller's "Super" design was unworkable. In January 1951, Ulam and Teller came up with the Teller–Ulam design, which became the basis for all thermonuclear weapons.

Ulam considered the problem of nuclear propulsion of rockets, which was pursued by Project Rover, and proposed, as an alternative to Rover's nuclear thermal rocket, to harness small nuclear explosions for propulsion, which became Project Orion. With Fermi, John Pasta, and Mary Tsingou, Ulam studied the Fermi–Pasta–Ulam–Tsingou problem, which became the inspiration for the field of nonlinear science. He is probably best known for realizing that electronic computers made it practical to apply statistical methods to functions without known solutions, and as computers have developed, the Monte Carlo method has become a common and standard approach to many problems. (Full article...)

Nuclear technology news


1 August 2025 – Russian invasion of Ukraine
U.S. president Donald Trump orders the deployment of two United States Navy nuclear submarines near Russia for potential military action against Russian forces in response to statements made by former Russian president Dmitry Medvedev and current deputy chairman of the Security Council of the Russian Federation regarding Trump's previously-stated deadline for ending the war in Ukraine. (Reuters) (BBC News)

Subcategories

Select [►] to view subcategories
Nuclear technology
Nuclear technology by country
Nuclear engineers
Nuclear technology-related lists
Anti-nuclear movement
Works about nuclear technology
Nuclear accidents and incidents
Advanced Stirling radioisotope generator
Nuclear technology companies
Nuclear explosives
Nuclear facilities
Nuclear fuels
Nuclear history
Isotope separation
Nuclear materials
Nuclear medicine
Neutron sources
Nuclear power
Nuclear programs
Nuclear propulsion
Radiation effects
Nuclear reactors
Nuclear reprocessing
Nuclear safety and security
Nuclear technology treaties
Radioactive waste
Nuclear weapons
Nuclear technology stubs

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals